The Macroeconomics of Credit Market Imperfections (Part II): Dynamic Models

Jin Cao1

1Munich Graduate School of Economics, LMU Munich

Reading Group: Topics of Macroeconomics (SS08)
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
What have we done last time? Static models

- Modelling credit market imperfections. Key factors: λ – measure of imperfection; ω – (exogenous) net worth;
 - Market economy fails to allocate the credit to its most productive use;
 - Net worth / balance sheet conditions (for both lenders and borrowers) play crucial roles in allocating the credit.
- Partial equilibrium models with homo- / heterogeneous agents;
- General equilibrium models with open economy extensions.

To be discussed this time: Dynamic models on dynamic feedback from the investment to the net worth — Persistence, volatility, and growth.
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Credit market imperfections in dynamic macro

- Key difference in dynamic models: Endogenized ω — Dynamic feedback from the investment to the net worth.

- Credit market imperfections in dynamic macro: Standard view
 - Bernanke-Gertler (BG, 1989): (Moral hazard based) financial accelerator
 - Higher borrowers’ net worth \rightarrow Less credit frictions \rightarrow Higher investment \rightarrow Higher borrower net worth

- Matsuyama: Beyond BG
 - Balance sheet effects from both lenders and borrowers;
 - Credit channels in growth: Both volume and composition of the credit matter. Much richer patterns.
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Augmented *OLG* model. Infinite, discrete time horizon $T = 0, 1, \ldots$

- A unit measure of homogeneous agents.
 - 1st period, supply one unit of labor, and save wage $S_t = w_t L_t = w(k_t)$. Then choose to be entrepreneurs / lenders, starting investment projects;
 - 2nd period, production, consume.

- Final good Y_t, for either consumption or investment. Produced by NC technology $Y_t = F(K_t, L_t)$, and
 $$y_t = \frac{Y_t}{L_t} = F \left(\frac{K_t}{L_t}, 1 \right) = f(k_t), \text{ with } f' > 0 > f'';$$

- Competitive factor market
 - Rental rate of capital $\rho_t = f'(k_t);$
 - Wage rate of labor $w_t = f(k_t) - k_t f'(k_t).$
Generations are linked via production. Implication: A rise in productivity increases the net worth of next generation.
An entrepreneur can choose one (and only one) from \(j \in \{1, ..., J\} \) indivisible investment projects. Investment technology

<table>
<thead>
<tr>
<th>Period (t)</th>
<th>Period (t + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project (j)</td>
<td>(m_j) final good</td>
</tr>
</tbody>
</table>

- \(m_j \): Measure of indivisibility – Fixed set-up cost;
- \(R_j \): Project productivity in capital. Then transformed into final goods by \(Y_t = F(K_t, L_t) \), combined with labor provided by the young;
- \(B_j \): Project productivity in final goods;
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Payoffs and constraints

- **Payoffs of agents:**
 - Entrepreneur j: $C^j_t = m_j R_j \rho_{t+1} + m_j B_j - r_{t+1} (m_j - w_j)$;
 - A lender: $C^o_t = r_{t+1} w_t$.

- **$PC - j$:** One is willing to be entrepreneur of project j only if $C^j_t \geq C^o_t \iff R_j f'(k_{t+1}) + B_j \geq r_{t+1}$ — In the perfect credit market, all credit goes to the projects with highest $PC - j$.

- **$BC - j$:** $\lambda_j m_j R_j f'(k_{t+1}) + \mu_j m_j B_j \geq r_{t+1} [m_j - w(k_t)]$. Agency problems in two dimensions:
 - λ_j on capital production during project j;
 - μ_j on final goods production during project j.
Payoffs and constraints (cont’d)

- $PC - j$ and $BC - j$:

\[
\frac{1}{r_{t+1}} = \max \left\{ \frac{1 - \frac{w(k_t)}{m_j}}{\lambda_j R_j f'(k_{t+1}) + \mu_j B_j}, \frac{1}{R_j f'(k_{t+1}) + B_j} \right\}
\]

Entrepreneur:

Lender:

$\text{lender}(t+1)$ for t

Work with m_j, earn $w(k_t)$

Generation t

Generation $t-1$

Generation $t+1$

Entrepreneur: m_j

Lender: $w(k_t)$
Equilibrium conditions

- (1) Resource constraint in investment \((X_{jt} - \text{measure of } j \text{ projects})\):

\[w(k_t) \geq \sum_j (m_j X_{jt}); \]

- (2) Resource constraint in capital input:

\[k_{t+1} \leq \sum_j (m_j R_j X_{jt}); \]

- (3) \(PC - j\) and \(BC - j\):

\[\frac{1}{r_{t+1}} \leq \max \left\{ \frac{1 - \frac{w(k_t)}{m_j}}{\lambda_j R_j f'(k_{t+1}) + \mu_j B_j}, \frac{1}{R_j f'(k_{t+1}) + B_j} \right\}. \]
Outline

Motivation
Taking stock
From static to dynamic

Going Dynamic: The Prototype Model
Settings
Constraints and equilibrium conditions
Solution for the baseline case

Credit Traps and Credit Cycles
Endogenous technological change
Introducing investment output heterogeneities
Convergence in the baseline case: $J = 1$

- Now have a look at the simplest case: Homogeneous investment projects, $J = 1$.

- Equilibrium conditions become
 - (1) Resource constraint in investment: $w(k_t) = mX_t$;
 - (2) Resource constraint in capital input:
 \[k_{t+1} = mRX_t = Rw(k_t); \]
 - (3) $PC - j$ and $BC - j$:
 \[r_{t+1} = \min \left\{ \frac{\lambda Rf'(Rw(k_t)) + \mu B}{1 - \frac{w(k_t)}{m}}, Rf'(Rw(k_t)) + B \right\}. \]

- Monotone convergence achieved under the assumptions:
 - Decreasing marginal return: $\partial \left(\frac{w(k)}{k} \right) / \partial k < 0$;
 - Inada conditions: $\lim_{k \to 0} \frac{w(k)}{k} = +\infty$; $\lim_{k \to +\infty} \frac{w(k)}{k} = 0$.
Convergence in the baseline case (cont’d)

- Same as prototype \textit{OLG} models (no wonder):

\begin{equation}
\begin{aligned}
\text{Entrepreneur: } & \mathbf{z}_t, \text{ earn } \mathbf{w}_t \\
\text{Lender: } & \mathbf{w}_{t-1} \text{ for } \mathbf{z}_t \\
\vdots & \\
\text{Work with } & \mathbf{z}_t, \text{ earn } \mathbf{w}_t \\
\end{aligned}
\end{equation}
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Now introduce heterogeneity in productivity. Set $j \in \{1, \ldots, J\}$ and $B_j = 0$, i.e. project j only returns $m_j R_j$ capital.

<table>
<thead>
<tr>
<th></th>
<th>Period t</th>
<th>Period $t + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project j</td>
<td>m_j final good</td>
<td>$m_j R_j$ capital</td>
</tr>
</tbody>
</table>

Equilibrium conditions:

1. Resource constraint in investment: $w(k_t) = \sum_j (m_j X_{jt})$;
2. Resource constraint in capital input: $k_{t+1} = \sum_j (m_j R_j X_{jt})$;
3. $PC - j$ and $BC - j$: $\frac{r_{t+1}}{f'(k_{t+1})} \geq \max \left\{ \frac{R_j}{1 - \frac{w(k_t)}{m_j \lambda_j}}, 1 \right\}$.
Endogenous technological change (cont’d)
Pro-cyclical technological change

- Set $J = 2$ and productivity change $R_2 > R_1 > \lambda_1 R_1 > \lambda_2 R_2$. Trade-off: Productivity versus agency problem – 2 may be subject to bigger agency problems than some mundane project 1 that use well-established technologies.
Pro-cyclical technological change: Convergence

- Exhibits various patterns of pro-cyclical convergence...

Credit-constrained growth

Credit traps

Credit collapse

$k_c < k^* < k^{**}$

Credit-constrained growth

$k^* < k_c < k^{**}$

Credit traps

$k^* < k_c < k^{**}$

Credit collapse
Pro-cyclical technological change: Intuition

- Driving forces: Rate of return, resource and credit constraints – Feed-back effects.

- For higher k
 - Borrowers can pledge more with higher net worth;
 - Credit composition may shift towards more productive projects;
 - However, capital deepening effect – The credit friction prevents the credit from flowing into the more productive project, for k not high enough.

- For improved λ:
 - A higher λ_1 can make things worse by increasing k_c, thereby creating a credit trap or causing a credit collapse;
 - A higher λ_2 seems desired, sometimes.
Counter-cyclical technological change

- Set $J = 2$ and productivity change $R_2 > R_1 > \lambda_2 R_2 > \lambda_1 R_1$, $\frac{m_2}{m_1} > \frac{1-\lambda_1}{1-\lambda_2} \frac{R_2}{R_1}$. Trade-offs: (1) 1 is less productive with more agency problem; (2) 1 requires the smaller set-up cost.
Counter-cyclical technological change (cont’d)

- Exhibits various patterns of counter-cyclical convergence...

\[k_{t+1} \]

- \[k_c < k^* < k_{cc} < k^{**} \]
 - Take-over

- \[k^* < k_c < k^{**} < k_{cc} \]
 - Credit cycles

- \[k^* < k_c < k_{cc} < k^{**} \]
 - Credit cycle with trap
Outline

Motivation
 Taking stock
 From static to dynamic

Going Dynamic: The Prototype Model
 Settings
 Constraints and equilibrium conditions
 Solution for the baseline case

Credit Traps and Credit Cycles
 Endogenous technological change
 Introducing investment output heterogeneities
Introducing heterogeneities in output of investment

Set $J = 2$, $R_1 = R$ and $B_1 = 0$; $R_2 = 0$ and $B_2 = B$, $f'(0) = +\infty$.

<table>
<thead>
<tr>
<th></th>
<th>Period t</th>
<th>Period $t + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1 (G)</td>
<td>m_1 final good</td>
<td>$m_1 R$ capital</td>
</tr>
<tr>
<td>Project 2 (B)</td>
<td>m_2 final good</td>
<td>$m_2 B$ final good</td>
</tr>
</tbody>
</table>

Implications of G and B

- G produces inputs that are complementary with labor inputs endowed by the next generation, helping to improve the net worth of the next generation;
- B produces the good that can be directly consumed. Does not help to improve the net worth of the next generation.
Equilibrium conditions

Again, equilibrium conditions

- (1) Resource constraint in investment:
 \[W(k_t) = m_1 X_{1t} + m_2 X_{2t}; \]

- (2) Resource constraint in capital input: \(k_{t+1} = m_1 R X_{1t}; \)

- (3) Credit constraints \(PC \) and \(BC \):
 \[
 f'(k_{t+1}) = \frac{R \max \left\{ \frac{1 - \frac{w(k_t)}{m_1}}{\lambda_1}, 1 \right\}}{B \max \left\{ \frac{1 - \frac{w(k_t)}{m_2}}{\mu_2}, 1 \right\}} \quad \text{when } X_{2t} > 0; \quad k_{t+1} = RW(k_t)
 \]
 \[
 \quad \text{when } X_{2t} = 0.
 \]
Baseline case: Prefect credit market

- Set $\lambda_1 = 1$, $\mu_2 = 1$, then
Baseline case: Prefect credit market (cont’d)
Credit market imperfection in projects G

- Set $\lambda_1 < 1$, $\mu_2 = 1$, then
 - Dynamic resource constraint: $k_{t+1} \leq R w(k_t)$;
 - PC and BC attached to projects G:

$$R f'(k_{t+1}) = B \max \left\{ \frac{1 - \frac{w(k_t)}{m_1}}{\lambda_1}, 1 \right\} \geq B.$$
Credit market imperfection in projects G (cont’d)

- Exhibits various patterns of convergence with different parameters, not a big wonder:

$$
(f')^{-1}\left(\frac{B}{R}\right) = Rw(k_c)
$$

Echo effect Slow recovery from recession Multiple steady state
Credit market imperfection in projects B

- Set $\lambda_1 = 1$, $\mu_2 < 1$, then
 - Dynamic resource constraint: $k_{t+1} \leq Rw(k_t)$;
 - PC and BC attached to projects B:

 $$B = Rf'(k_{t+1}) \max \left\{ \frac{1 - \frac{w(k_t)}{m^2}}{\mu_2}, 1 \right\} \geq Rf'(k_{t+1}).$$
Credit market imperfection in projects B (cont’d)

- **Pattern 1** Small B or μ: Projects B never financed
Credit market imperfection in projects B (cont’d)

- **Pattern 2** High B and μ: Overshooting
Pattern 3 Smaller μ: Oscillatory convergence
Pattern 4 Even smaller μ: Endogenous fluctuations, chaos
Credit market imperfection in projects B (cont’d)

- Rich patterns: Neoclassical convergence – Endogenous fluctuations – Chaos. Intuition:
 - If projects B suffer from major agency problems (a small μ), they are never financed. All the credit always goes to G;
 - If projects B suffer from minor agency problems (a large μ), they are financed as soon as they become more profitable than projects G;
 - Fluctuations occur when agency problems with projects B are too big to be financed when the net worth is low, but small enough to be financed when the net worth is high.

- Introducing non-monotonicity in macro dynamics.
- Credit market imperfections play crucial roles in amplifying business cycle fluctuations.
Summary

- What have we done so far?
 - OLG based dynamic models on dynamic feedback from the investment to the net worth;
 - Endogenous technical change via credit channels: Take-over, credit traps, credit collapse;
 - Heterogeneities in output of investments: Convergence, endogenous fluctuations, chaos.

- Flexible, tractable, compact model. Ready for more extensions:
 - More complicated constraints;
 - Heterogeneities in agents (inequality and poverty) and commodities (domestic and foreign goods), open economy, etc.
Matsuyama, K.
Financial market globalization, symmetry-breaking, and endogenous inequality of nations.

Matsuyama, K.
Credit traps and credit cycles.

Matsuyama, K.
Aggregate implications of credit market imperfections.
in D. Acemoglu, K. Rogoff, and M. Woodford. (eds.)